
SOFTWARE SYSTEM SAFETY GUIDE

LEONARD L. RUSSO
US ARMY COMMUNICATIONS AND

ELECTRONICS COMMAND

MAY 92

SUMMARY

 Because software is unsuited to traditional hardware-oriented
hazard analysis techniques, System Safety Engineers must ensure
that Software Safety requirements are part of the specification
documents. Selected software hazard analyses should be used
during the design phases to detect software deficiencies and
assure that adequate safety features are designed into the
software. This Software Safety Guide is provided to assist the
System Safety Engineer in developing and/or managing a Software
Safety Program and provide insight into the safety requirements
for the design of safety critical software. The Safety engineer
faces new challenges when integrating Software Safety into the
total system safety effort. To assist the System Safety Engineer
with implementation, this guide will:

 * Define Software and Software Safety terms.

 * Explain the use of the Software Safety Matrix.

 * Discuss the implementation of the Software Safety
 Program Plan (SWSPP).

 * Discuss Software Safety requirements in the Statement
 of Work (SOW).

 * Discuss software documentation and configuration
 management.

 * Discuss previously developed or NDI software.

 * Discuss Software Safety analysis/guidelines.

 * Provide an example of a Software Safety Design
 Verification Checklist.

 iii
FOREWORD

 This Technical Report was prepared by the U.S Army Materiel
Command (AMC) Action Committee for System Safety (AACSS).

 Readers comments and suggestions are welcome. For further
information or additional copies of this document, write or phone
the CECOM Safety Office.

 Commander
 U.S. Army Communications-Electronics Command
 ATTN: AMSEL-SF-SEP (Leonard Russo)
 Fort Monmouth, New Jersey 07703-5024
 (COM) 908-532-0084 (DSN) 992-0084
 (FAX) 908-995-2667

 iv

 TABLE OF CONTENTS

1. Introduction . 1

2. Getting a Software Safety Program Started 2

3. Software Safety Hazard Assessment process 5

 3.1 Software Hazard Criticality Matrix 5

 3.2 Hardware vs. Software Safety Matrix 5

 3.3 Software Hazard Control Categories 6

4. Software Safety Program Plan (SWSPP) 9

 4.1 Software Development Plan 10

 4.2 Documentation Requirements 10

 4.3 Additional Documentation 11

5. Configuration Management Activities 13

 5.1 Configuration Control Board 13

 5.2 Additional Requirements 13

6. Previously Developed or NDI/Commercial Off-The-Shelf
(COTS) Software . 14

 6.1 Safety Critical Approval Process 14

 6.2 Safety Critical Concerns 15

7. Software Safety Analyses 16

8. General Guidelines for Designing Safety-Critical
Software . 17

9. Conclusion . 19

10. Recommendations 20

11. References . 21

12. Definitions, Terms, and Acronyms 22

Appendix A. System Software Safety Checklist 26

 v
 SOFTWARE SYSTEM SAFETY GUIDE

1. Introduction

 In the past, industry in general considered increased produc-
tivity as the most important aspect of Software Engineering. Very
little was mentioned about the reliability of the software product
and nothing about the safety of the software product.

 In recent years, the role of software has become integral to
the command and control of complex and costly systems upon which
human lives may depend. This role has compelled both the Depart-
ment of Army and Industry to establish goals of highly reliable
and productive safe software in which hazard-causing faults or
errors are unacceptable. These new goals require the support of
professionals who have attained some level of expertise in the
various aspects of software and firmware. The Safety Engineer
should be able to apply system safety methods and techniques to
the analysis of software with a reasonably high level of
confidence in order to certify the safety of the overall system.

 Because Software Safety is a field in its infancy, all of the
usual birthing and growing pains have to be experienced. Recent
incidents involving software are strongly suggestive of the risks
involved. System Safety Engineers need to recognize that software
is just another system component, and that this component can
contain errors or defects which can cause undesired events in the
overall system. System Safety Engineers must work in conjunction
with Software Engineers to identify those errors which can cause
hazards or produce undesired events.

2

2. Getting a Software Safety Program Started

 Most new materiel development efforts are predominantly
software-controlled. The Operational Requirements Document (ORD)
is the first document that should specify software and hardware
hazards that will be eliminated or controlled. By specifying
software hazards in the ORD, the System Safety Engineer has the
basis for initiating a Software Safety program. Often, at this
point in time, it is very difficult to do this, since requirements
are not well defined. The System Safety Engineer should include
generalized statements to cover these hazards. The System Safety
lessons learned data base for embedded software may be able to
give Engineers some examples.

 Software Safety should then be included as part of the Request
For Proposal (RFP). Inclusion of Software Safety into the RFP
will alert the contractor that a Software Safety effort will be
required as part of the contract. The following items can be
included in the RFP:

 a. The development of any firmware associated with safety-
related functions, data, or storage should be controlled as
software instead of hardware. This requires that firmware have
increased configuration control, testing, and quality assurance
(see Section 12, def. of Firmware).

 b. A Hardware Risk Assessment Matrix and a Software Safety
Matrix should be specified in the RFP. The combined use of these
matrices will assist in identifying the required safety effort
(see Section 3).

3

 c. Examples of anticipated hazards should be provided to the
contractor via the Software Safety Specification/Guidelines, that
are referenced in the SOW. This information is typically
available from mishap/incident reports associated with similar
systems (in the field as well as the test environment). It is
expected that a contractor will, at least, repeat these in his
proposal. Example hazards should include software or hardware-
effected failures.

 d. The definition of risk in DOD-STD-2167A should be expanded
to include Safety risk (see Section 12, def. of risk management).

 e. The RFP should require a Software Safety Program Plan
(SWSPP), using DI-SAFT-80100, to be submitted as an appendix to
both the System Safety Program Plan (SSPP) and the Software
Development Plan (SDP). The System Safety engineer can judge the
level of integration of the Software Safety tasks, manning, and
liaisons as referenced in both the SSPP and SDP (see Section 4).

 f. The Request for Proposal (RFP) should also require a
Software vs. Hardware Safety lifecycle flow diagram to be
submitted as part of the proposal (see Figure 1).

 g. A draft Software System Safety Design Verification
Checklist should also be included in the RFP (see appendix A).
This will enable Software and Safety Engineers to better assess
and identify the safety critical requirements and interfaces.
This checklist can then be tailored and used to develop software
safety tests. Furthermore, it will also ensure traceability to
the requirement/specification documents.

4

3. Software Safety Hazard Assessment Process

 When implementing software safety as part of an overall system
safety effort, it is critical to specify a Software Safety matrix
as well as a hardware matrix. The hardware matrix is a familiar
tool but the Software Safety matrix must be approached from a
different perspective.

 3.1 Software Hazard Criticality Matrix

 The Software Hazard Criticality Matrix (See Figure 2) is
similar in form to the Hazard Risk Assessment Matrix for hardware,
but the purpose is to define the level of testing rather then the
hazard category. The matrix is established using the Software
Hazard Severity Categories for the columns and the Software Hazard
Control Categories for the rows. The matrix is completed by
assigning a Software Hazard Assessment Code Index number to each
element. A Software Hazard Assessment Code (SHAC) of "1AT, 1AN,
1IT, 1OC, 1ID, 2AT, 2AN, or 2IT" from the matrix implies that a
significant and rigorous amount of analyses/testing is needed. A
SHAC of "2ID, 2OC, 3AT, 3AN, or 3OC" implies that in-depth testing

6

and a high level analysis of requirements and design are needed. A
SHAC of "3OC, 3ID, 4AT, 4AN, 4IT, 4OC, or 4ID" implies that some
level of testing is needed and requires verification from the
managing activity.

 (NOTE: Unlike the hardware related RAC, a low index number
does not mean that a design is unacceptable. Rather, it indicates
that greater resources need to be applied to the analysis and
testing of the software and its interaction with the system to
reduce the system risk to an acceptable level.)

 A hazard index code should be assigned to each identified
software-related hazard of the program using the Hazard
Criticality Matrix.

 3.2 Hardware vs. Software Safety Matrix

 A System Risk Assessment Matrix and a Software Hazard
Criticality Matrix should be included in the RFP. This will
assist the contractor in initial Design Trade studies. Note that
the Hardware Risk is a combination of severity and probability of
the hazard under investigation. A ranking system of high, medium,
and low should be furnished. The Software Safety Matrix is used
when software may control, monitor, or contribute to a system
level safety hazard. The system-level hazard severity is fixed by
the system architecture and other design parameters. The
row/column position of the software under investigation will
determine the level of rigor to which Software Safety analyses,
configuration control, software engineering, and quality
assurances will be exercised to assure that the software safely
performs, in the mission environment, the functions for which it
was designed.

 3.3 Software Hazard Control Categories

 The specified levels of software control for hazardous
function software are as follows:

 a. Autonomous Time Critical - Software exercises autonomous
control over potentially hazardous hardware systems, subsystems or
components without the possibility of real time human intervention
to preclude the occurrence of a hazard. Failure of the software
or a failure to prevent an event leads directly to a hazard's
occurrence. An example would be an aircraft automatic landing
system.

7

 b. Autonomous/Not Time Critical - Software exercises control
over potentially hazardous hardware systems, subsystems, or
components allowing time for human intervention by independent
safety systems to mitigate the hazard. However, these systems
themselves are not considered adequate for safety; therefore,
corrective action may be necessary. An example would be an
automatic terrain following flight control system.

 c. Information/Time Critical - Software item displays
information requiring immediate operator action to mitigate a
hazard. Software failures will allow or may not be designed to
prevent the hazard's occurrence. An example would be missile
range control safe flight path parameters.

 d. Operator Control - Software items issue commands over
potentially hazardous hardware systems, subsystems or components
requiring human action to complete the control function. There
are several, redundant, independent safety measures for each
hazardous event. An example would be weapon release from a
traditional aircraft.

 e. Information Decision Algorithm - Software generates
information of a safety critical nature used to make safety
critical decisions. There are several, redundant, independent
safety measures for each hazardous event.

 f. Not Safety Related Software - Software which controls no
hazardous functions. This designation is required to:

 (1) Show the limits of safety analysis and test.

 (2) Document reasons for limits of effort.

 (3) Get customer approval of the set limits.

 (4) Conserve resources to lower cost.

4. Software Safety Program Plan (SWSPP)

 The development and support of a safety critical software
system requires application of specific system and software
engineering techniques within a safety management framework.
Safety management makes explicit the safety-related activities in
each phase of the software lifecycle. The SWSPP shall describe
how the organization should plan, develop, implement, and maintain

10

an effective Software Safety Program. The SWSPP shall specify
safety-related activities to be carried out for each development
activity. The SOW will give the details/contents that should be
included in the SWSPP, as follows:

 (1) Until the contractor's experience levels increase, and
to assist in grading a proposal, the RFP should require a Software
Safety Program Plan (SWSPP) (using DID-SAFT-80100), and be
submitted as an appendix to both the Software Development Plan
(SDP) (DI-MCCR-80030A), and the System Safety Program Plan (SSPP).
 The measures of compliance will be based on a credible state-of-
the-art SWSPP and the level of integration of the SWSPP tasks,
manning, and liaisons as referenced in the SSPP and SDP.

 (2) The contractor shall develop and implement a method of
identifying safety software functions and requirements in the
software documentation. The safety critical functions should be
designated as Safety Critical Computer Software Components
(SCCSCs) or Safety Critical Computer Software Units (SCCSUs).
During the software safety process, the contractor should ensure
that subsequent software design documents identify the SCCSCs and
SCCSUs appropriately.

 (3) The contractor should develop and implement a tracking
system within the configuration management structure for SCCSCs
and SCCSUs and safety design requirements. The tracking system
should include the flow of safety functions and requirements
through the software documentation. The tracking should include a
description of the requirement and references to the
implementation of each requirement at each level of documentation.

 (4) The contractor's System Safety Organization should
participate in the development of the Software Development Plan
(SDP), Software Quality Evaluation Plan (SQEP), and other
documents governing the contractor's software development and
evaluation process. System Safety will incorporate appropriate
design guidelines and requirements. The contractor shall develop
Software Safety Evaluation criteria and incorporate these criteria
into the SQEP.

 4.1 Software Development Plan

 The Software Development Plan should describe:

 (1) how the software requirements are derived from the
initial requirements of the system,

11

 (2) when and how the program is structured and coded,

 (3) when a hazard analysis is performed on the soft-
ware/system/component and whether this analysis remains ongoing
throughout development as revisions and enhancements occur,

 (4) when verification, validation and design reviews are
conducted,

 (5) what criteria must be met for a formal release
of the software,

 (6) what procedure are used to ensure that all software
revisions and testing requirements are traceable to corresponding
software or program requirements,

 (7) what procedures are used to assure that software and
system testing requirements are kept current with revisions, and

 (8) what quality assurance procedures are followed during
design and development phases.

 4.2 Documentation Requirements

 Systematic documentation control at every phase of the
development cycle is an essential part of ensuring the safety of
the design and implementation. Several standards (such as DOD-
STD-2167A) identify documentation for both critical and non-
critical software.

 A section of the SWSPP shall specify documents to be used and
their contents. The development organization may elect to prepare
independent safety documents or may integrate the safety
documentation with other program documents. Whichever form is
chosen, the following additional documentation requirements exist
for safety critical software.

 (1) Results of Software Safety Requirements Analysis

 (2) Results of Software Safety Design Analysis

 (3) Results of Software Safety Code Analysis

 (4) Results of Software Safety Test Analysis

12

For each of the reports listed above, the SWSPP should define its
content.

 4.3 Additional Documentation

 Documents prepared IAW existing standards (i.e., DOD-STD-
2167A) can provide the framework within which many software safety
program needs can be accomplished. However, these standards do
not specifically highlight safety related activities. The
information specific to the Software Safety Program may be
included through augmentation of the named documents. The
following documents should be addressed:

 (1) Software Program Management - Documentation of how the
Software Safety Program will be implemented, integrated, and
managed with other development activities. The Software Develop-
ment Plan (DOD-STD-2167A), can be augmented to include this
information.

 (2) Software Safety Requirements - Specification of safety
requirements to be met by the software to avoid or control safety
hazards should be prepared. The Software Requirement
Specification (SRS) (DOD-STD-2167A) can be augmented to include
this information.

 (3) Software Development Standards, Practices, and Conven-
tions Approved, controlled, and/or prohibited practices that are
essential to achieve system and software safety objectives and
requirements should be specified.

 (4) Test Documentation - Specific test planning, test design,
test cases, test procedures, and test reports should be prepared
and/or performed to demonstrate that safety requirements are
satisfied. The Test Documentation identified in DOD-STD-2167A may
be augmented to include this information. The final Test Report
should include and assess the residual safety risk with respect to
incomplete changes or updates to the software and the system level
hardware. This is essential, since these documents will be used
for preparing the software materiel release statement.

 (5) Software Verification and Validation - Information
regarding how Software Safety will be verified and validated
should be prepared. The method(s) to ensure the traceability of
safety requirements to the specifications, implementation, and
safety related test cases should be specified. The formal report
submitted by the independent IV&V agent (IAW DOD-STD-2167A section
4.1.7) should include the results of safety-related V&V

13

activities. This is in addition to the requirements IAW DOD-STD-
2167A, for general software engineering practices. The results
can be included or combined with other IV&V or V&V efforts. These
results will also be analyzed to ensure that no residual hazards
exist in order to prepare a software materiel release statement.

 (6) Software User Documentation - Information that may be
significant to the safe installation, use, maintenance, and/or
retirement of the system should be prepared. The Software Users
documentation described in (DOD-STD-2167A) may be augmented to
include this information.

14

5. Configuration Management Activities

 The correct configuration of the safety critical software is
an essential element in the overall integrity of the system being
developed. Rigorous configuration management must be in force
during all phases of the software lifecycle, from project initia-
tion through system retirement, and shall include appropriate
control of program documentation, source code, object code, data
development tools, environments (both hardware and software), and
test cases. Software Safety configuration control, in some cases,
should be required in the SWSPP. A section of the SWSPP should
describe how the software configuration should be managed IAW an
approved Configuration Management Plan (CMP). Approved methods
and/or tools should be used for configuration control, access
control, and status reporting. DOD-STD-2167A section 4.5 provides
guidance on planning software configuration management practices.
 Particular attention shall be paid to the process by which
changes to specific safety critical software items are authorized
and access granted to specific safety critical configuration items
for incorporation of approved changes.

 5.1 Configuration Control Board

 A section of the SWSPP should also include a description of
the roles and responsibilities of the safety personnel in the
change evaluation, change approval, and change verification
processes. The relationship between the Configuration Control
Board (CCB) and other boards, which may have safety related
responsibilities, should be identified. It is strongly
recommended that the CCB have a Software Safety representative as
a member.

 5.2 Additional Requirements

 A description of the provisions for ensuring that
configuration management of the following software meets the

15

additional requirements necessary for safety critical software
should be prepared and included in the SWSPP:

 (1) Software Development Tools

 (2) Previously Developed Software

 (3) NDI Software

 (4) Subcontractor Developed Software

6. Previously Developed or NDI/Commercial Off-The-Shelf (COTS)
Software

 Previously developed or GFE software (i.e., operating systems,
scientific subroutine libraries, display management systems, data
base system, etc.) may be used in whole or in part to satisfy
system requirements. Additionally, this software may permit or
require its characteristics to be tailored or adapted through
linking to other software or through access to data. The use of
previously developed or purchased software in a safety critical
application does not exempt that software from provisions of the
SWSPP.

 6.1 Safety Critical Approval Process

 The use of previously developed or purchased software in a
system with safety critical operations necessitates completing an
approval process that should include the following steps:

 (1) Determine the extent to which the previously developed or
purchased software will be used in a safety critical system.

 (2) Identify relevant documents (i.e., product
specifications, design documents, usage documents, etc.) that are
available to the obtaining organization, and determine their
status.

 (3) Determine the conformance of the previously developed or
purchased software to published specifications.

16

 (4) Identify the capabilities and limitations of the
previously developed or purchased software with the program
requirements.

 (5) Test the safety critical features of the previously
developed or purchased software independent of the program's
software.

 (6) Test the safety critical features of the previously
developed or purchased software with the program's software.

 (7) Perform a hazard assessment to determine if the use of
the previously developed or purchased software will result in
undertaking an acceptable level of testing even if unforeseen
hazards result in a failure.

 6.2 Safety Critical Concerns

 Previously developed or purchased software that should not be
used in safety critical software products are those that:

 (1) Cannot be adequately tested

 (2) Present significant risk of hazardous failure

 (3) Become unsafe in the context of its planned use, or

 (4) Represent significant adverse consequences in the event
of a failure.

 The inability to determine the level of risk or the
consequence of failure is justification for rejecting the use of
the previously developed or purchased software. Equivalent
analyses, tests, and demonstrations by the vendor of the adequacy
of the vendor supplied software for use in safety critical
application may be accepted as satisfying the intent of the above
requirements.

17

 Previously developed or purchased software that is obtained as
source code and modified for use by the project should be subject
to the same Software Safety Program requirements as are applied to
new software.

7. Software Safety Analyses

 The Software Safety tasks included in MIL-STD-882B, Notice 1,
will increase the costs of the system safety program. This
increased level of effort in software safety analyses will also
result in a greater number of hazards requiring the Program
Manager's attention. However, the initial increase in overall
program development costs will result in lifecycle savings due to
fewer software and system failures. It should be noted that the
potential benefits of Software Safety, especially for large scale
systems, should justify these costs.

 The Preliminary Hazard Analyses (PHA) are the first step in
determining the level of Software Safety effort required. Once
the preliminary hazards are identified, these can be attributed to
software or hardware. The Software Safety Program Plan (SWSPP)
should address how the contractor plans to tailor the analyses,
and the configuration control methodology, based on those
specified hazards.

 Software Safety tasks, from the 300 series of MIL-STD-882B,
Notice 1, should be specified to address the identified hazards.
Tailoring of these tasks is crucial in keeping the cost of the
program down. Software Fault Tree Analysis, Code Analysis, Petri-
Net Analysis, and other methodologies are labor intensive and
should be directed toward specified hazardous conditions.

18

8. General Guidelines for Designing Safety-Critical Software

 The primary events in a Software Safety program include
identifying the hazardous conditions controlled by software,
determining the extent of control on these software functions, and
ensuring that the software is tested. The following are some
guidelines that should be followed when designing safety-critical
software. These guidelines should be included in the Software
Safety Specification, and included as part of the Procurement Data
Package input.

 a. The safety-related code should be isolated physically.
the safety-related software should be on as few circuit cards as
possible to minimize configuration control.

 b. The safety-related functions should be identified within
the system. This allows the software code to be traced and
checked for errors.

 c. The safety-related code should be single entrance-exit so
that erroneous input or output does not create a hazardous
condition. The analysis and test of the software will be enhanced
by decreased complexity; avoid "spaghetti code."

19

 d. The software should always initialize in a known safe
state.

 e. The complexity of safety-related software should be
considered in the software design. Complexity can be controlled
by eliminating "GO TO" and "with"ing multiple packages together in
Ada, and by optimizing the number of safety interlocks to perti-
nent-state description input and diverse-state sample testing.

 f. The environment of operation should be considered when
designing the location of software within the system.

 g. The software should be designed such that a single point
failure cannot create a hazardous condition.

 h. System and Subsystem specifications should be reviewed to
identify and verify operator-software interfaces.

 i. Functional flow diagrams (or their functional equivalent),
storage allocation charts, and other program documentation should
be analyzed to ensure specification and safety requirements have
been met.

 j. The software should perform a status check of safety-
critical elements prior to executing a potentially hazardous
sequence.

 k. The software should incorporate a minimum of two separate
independent commands to initiate a safety-critical function.

 l. Safety Critical Computer Software Components (SCCSCs) in
which changes have been made shall be subjected to complete
regression testing. This is applicable to all software
development projects where version updates and enhancements, to
fielded and developmental software, are made in order to sustain
full materiel release of the software. All changes (i.e., code
level) must be analyzed, reassessed, and tested to ensure
resolution. All documentation should be updated, and
Configuration Control/Management of changes must include a safety
sign-off.

20

9. Conclusion

 Lessons learned are extremely important. Until Data Recorders
or other On-Board Diagnostic Recorders are available, only
corporate memory or tribal knowledge will keep us from repeating
past mistakes. At some point in the near future, the Software
Safety Action Committee will call for submittal (see Foreword of
this document), of all available lessons learned to compile a
sanitized list, which will then be made available to all users via
a database. It was pointed out in the Software Safety course that
lessons learned will be crucial to passable Software Safety on any

21

project. An appendix to this document is being established which
will contain software safety lessons learned/incidents. This will
be constantly updated as reviewers enter their specific software
safety hazards.

22

10. Recommendations

Training for Software Safety is available from:

 * McKinlay & Associates
 15669 Century Lake Dr.
 Chesterfield, MO. 63017
 Instructor: Archibald McKinlay (314) 532-2136/5657
 3 days at your location

 (or)

 * University of Southern California
 Institute of Safety & Systems Management
 Los Angeles, CA.
 Instructors: A. McKinlay, & Dr. Gerald McDonald
 3 days at USC

 * University of Maryland
 Software Reliability Course
 Instructor: Dev Reheja
 2 days at University of Maryland

 The AMC Action Committee received training from McKinlay &
Associates.

 Future actions of the Software Safety Action Committee will
address: (1) Safety Statements in the Operational Requirements
Document (ORD), (2) Software Safety Analysis Techniques, (3)
Software Safety in projects already in development, and (4)
testing products which have not received the benefits of Software
Safety Engineering.

23

11. References

MIL-STD-882B System Safety Program Requirements,
 30 Mar 84 (change Notice 1)

AR 385-16 System Safety Engineering and
 Management, 3 May 90

DOD-STD-2167A Defense System Software Development,
 29 Feb 88 (Safety related examples are
 in MIL-HDBK-287)

DOD-HDBK-287 Defense System Software Development
 Handbook, 20 Apr 88

DOD-STD-2168 Software Quality Evaluation,
 26 Apr 85

NATO STANAG 4404 Safety Design Requirements and
 Guidelines for 1990, Munitions Related
 Safety Critical Computing Systems.

DEF-STAN-00-55 Requirements for the Procurement of
 Safety, UK Critical Software in Defense
 Equipment.

24

12. Definitions, Terms, and Acronyms

 The following are definitions of words, terms, and acronyms
used in this document, or in other documents relating to software
and software safety.

 (NOTE: Although the following terminology is relatively new
to the safety community, it is widely accepted and used in various
military and industry standards.)

Computer Hardware - Devices capable of accepting and storing
computer data, executing a sequence of operations on computer
data, or producing any output data (including control outputs).

Computer Software (or Software) - A combination of associated
computer instructions and computer data definitions required to
enable the computer hardware to perform computational or control
functions.

Computer Software Component (CSC) - A distinct part of a
computer software configuration item (CSCI). CSCs may be further
decomposed into other CSCs and Computer Software Units (CSUs).

Computer Software Configuration Item (CSCI) - Software that
is designated by the procuring agency for configuration
management.

Computer Software Unit (CSU) - An element specified in the
design of a Computer Software Component (CSC) that is separately
testable.

Firmware - Software that resides in a nonvolatile medium that
is read-only in nature, and is completely write-protected when
functioning in its operational environment (i.e., PROM, ROM, EPLD,
PLA, and MMIC as well as transistor circuits) Firmware for
safety-related functions, data, or storage, shall be controlled as
software during development and test. The contractor is responsi-
ble for the safety of commercial firmware, and this should be
reflected in the contract and RFP.

 Hazard - A condition that is a prerequisite for an accident.
(See AR 385-16.)

 Hazardous Operation/Condition - An operation (activity) or
condition (state) which introduces a hazard to an existing
situation without adequate control of that hazard, or removes or

25

reduces the effectiveness of existing controls over existing
hazards, thereby increasing mishap probability or potential mishap
severity, or both.

 Independent Verification and Validation (IV&V) - An
independent test and evaluation process that ensures that the
computer program satisfactorily performs, in the mission
environment, the functions for which it was designed.
Verification is the iterative process of ensuring that during each
phase of development the software satisfies and implements only
those software safety requirements that were approved at the end
of the previous phase. Validation is the test and evaluation
process to ensure that the software meets all system and software
safety performance requirements.

 Managing Activity - The organizational element of DOD assigned
acquisition management responsibility for the system; or prime or
associate contractors or subcontractors who wish to impose system
safety tasks on their suppliers.

 Memory - An electronic, mechanical, magnetic, or other
technology device, or location within such a device, where
software data is stored.

 Mishap Probability - The numerical likelihood that a mishap
will occur given a defined set of circumstances. This term does
not reflect the reliability of the software, which is the likeli-
hood of a software component error (commonly referred to as a
software "bug") rendering the software useless. Safety analyses
assume a software reliability of 1. (See MIL-HDBK-217.)

 Non-Safety-Critical Computer Software Component - Computer
software component (unit) which does not control safety-critical
hardware systems, subsystems, or components, and does not provide
safety-critical information.

 Product Baseline - Configuration Item(s) which have design
frozen at established program milestones (SDR, PDR, CDR), and
ultimately subjected to formal testing and configuration audits
prior to delivery.

26

 Reduced Instruction Set Chip (RISC) - The RISC style architec-
ture may be said to be characterized by the following features:

 (1) A small set of primitive instructions of essentially the
same size is available.

 (2) Each instruction is executed in one machine cycle.

 (3) The instructions provide support for high level languages
and their compilers.

 (4) Only load/store instructions access memory. The other
instructions operate upon registers.

 Risk Management - The process whereby management decisions are
made and implemented regarding the control of risks. The contrac-
tor shall document and implement procedures for risk management.
The contractor shall identify, analyze, prioritize, and monitor
the areas of the software development project that involve
potential technical, cost, schedule, and safety risks.

 Safety-Critical Computer Software Component (SCCSC) - Computer
software component (unit) whose inadvertent response to stimuli,
failure to respond when required, response out-of-sequence or in
unplanned combination with others, can result in a critical or
catastrophic mishap, as defined in MIL-STD-882B.

 Safety Integrity - The ability of a control system to work
correctly (this includes shutting down safely if a fault occurs),
which depends on the entire system, not just the computer.

 Safety Kernel - An independent computer program that monitors
the state of the system to determine when potentially unsafe
system states occur or when transitions to potentially unsafe
system states may occur. The Safety Kernel is designed to prevent
the system from entering the unsafe state and return it to a known
safe state.

 Software - All instructions, logic, and data, regardless of
the medium on which it is stored, that is processed or produced by
automatic machines and which is used to control or program those
machines. Software, as used in the context of this document, also
includes firmware and documentation associated with all of the
above.

27

 Software Error - a mistake in engineering, requirements,
specifications, coding, or design of software.

 Software Failure - the result of a fault or a system that
doesn't meet specification.

 Software Fault - the manifestation of an error.

 Software System Safety - The optimization of system safety in
the design, development, use, and maintenance of software systems
and their integration with safety-critical hardware systems in an
operational environment.

 Software System Safety Analysis - The use of iterative
analytic, inspection, and test techniques to optimize system
safety in the design, development, use and maintenance of safety-
critical computer software components of hardware systems; and, to
assess residual software-related mishap risk in the system.

 Support Software - All software used to aid the development,
testing, and support of applications, systems, test and
maintenance software. Support software includes, but is not
limited to:

 a. Compilers, assemblers, linkage editors, libraries and
loaders required to generate machine code and combine hierarchical
components into executable computer programs.

 b. Debugging software.

 c. Stimulation and simulation software.

 d. Data extraction and data reduction software.

 e. Software used for management control, software configura-
tion management, or documentation generation and control during
development.

 f. Test software used in software development.

 g. Design aids, such as program design language tools, and
problem statement analysis tools.

28

 h. Test and maintenance software to assist in fault diagnosis
and isolation, operational readiness verification, and system
alignment checkout of the system or its components. It may be
used to check out and certify equipment and total system at
installation, reinstallation, or after maintenance. It is also
used in accordance with prescribed procedures to maintain the
system throughout its operational life. It should be noted that
the test and maintenance software may reside in another system
such as a Test Program Set (TPS).

 System Safety - The application of engineering and management
principles, criteria, and techniques to optimize safety within the
constraints of operational effectiveness, time, and cost
throughout all phases of the system life cycle.

 System Software - The totality of operational software
resident in a computer (operating system, executive programs,
application programs and data bases) associated with a system.

 Version - An identified and documented body of software.
Modifications to a version of software (resulting in a new
version) require configuration management actions by either the
contractor, the contracting agency, or both.

29

APPENDIX A

 SYSTEM SOFTWARE SAFETY CHECKLIST

30

ITEM

 NON-APPLICABLE-----
SYSTEM SOFTWARE NON-COMPLIANT------
SAFETY CHECKLIST COMPLIANT----------

---------- ----

GENERAL/MISCELLANEOUS

Provides for precluding dependence on administrative procedures.

Provides for using information control
for deriving the authorization code for the activation of the
authorization device.

Provides that the software contains only features or capabilities
required by the system, and that it does not contain additional
capabilities, e.g., testing, troubleshooting, etc.

Provides for positive control of system safety-critical functions at all
times.

Provides for safety-critical sub-routines and sub-programs to include
"come from" checks to verify that they are being called from a valid
calling program.

SEPARATION OF COMMANDS/FUNCTIONS/FILES/PORTS

Provides for using separate launch authorization and separate launch
control functions to initiate a missile launch.

Precludes the ground ordnance enabling arming code from being the same as
the launch authorization code.

Provides for requiring separate "arm" and "fire" commands for ordnance
initiation.

Precludes using input/output ports for both critical and non-critical
functions.

Provides for sufficient difference in addresses for critical input/output
ports vs. non-critical ports that a single address bit failure does not
allow access to critical functions or ports.

Provides for having files that are unique and have a single purpose.

INTERRUPTS

Provides for defining specific interrupt priorities and responses.

Provides for software system management of interrupt control so as to not
compromise safety-critical operations.

31

ITEM

 NON-APPLICABLE-----
SYSTEM SOFTWARE NON-COMPLIANT------
SAFETY CHECKLIST COMPLIANT----------

---------- ----

SHUTDOWN/RECOVERY/SAFING

Provides for fail safe recovery from inadvertent instruction jumps.

Shutdown provisions are included in software upon detection of unsafe
conditions.

Provides for the system reverting to a known predictable safe state upon
detection of an anomaly.

Provides for software safing of critical hardware items.

Provides for an orderly system shutdown as a result of a command
shutdown, power interruptions, or other failures.

Requires that the software be capable of discriminating between valid and
invalid external interrupts and shall recover to a safe state in the
event of an erroneous external interrupt.

Provides for entry into a safe state in the event of erroneous entry into
a critical routine.

Protects against out-of-sequence transmission of safety-critical function
messages by detecting any deviation from the normal sequence of transmis-
sion. When this condition is detected, the software terminates all
transmissions, recycles to a known safe state, and displays the existing
status so the operator can take compensatory action.

Provides for initializing all unused memory locations to a pattern, that
if executed as an instruction, will cause the system to revert to a known
safe state.

Provides for identifying safing scenarios for safety-critical hardware
and including them into the design logic.

Provides for the capability of reversing or terminating launch authori-
zation and ordnance arming functions.

ITEM

 NON-APPLICABLE-----
SYSTEM SOFTWARE NON-COMPLIANT------
SAFETY CHECKLIST COMPLIANT----------

---------- ----

PREVENTING/PRECLUDING/DISALLOWING ACTIONS

Provides for preventing inadvertent generation of critical commands.

Provides for disallowing co-existence of potentially hazardous routines.

Provides for preventing bypass of safety devices during test.

32

Following computer memory loading, automatic control is prevented until
all data is loaded and verified.

Precludes inadvertent operation of data entry control to critical
routines.

Provides for precluding a change in state if data synchronization is
lost.

Provides for prevention of a hardware failure of power interruption from
causing a memory change.

Provides for prevention of memory alteration or degradation over time
during use.

Provides for program protection against unauthorized changes.

Provides for not allowing the safety-critical time limits in decision
logic to be changed by the console operator.

Provides for preventing inadvertent entry into a critical routine.

Provides for not allowing a hazardous sequence to be initiated by a
single keyboard entry.

Prohibits transmission of any critical command found to be in error and
notifies the operator of the error.

Provides the controlling or monitoring of nuclear weapons to be incapable
of bypassing operator control of safety-critical functions.

Provides for disallowing use of workaround procedures when reverting to a
safe configuration after the detection of an anomaly.

ITEM

 NON-APPLICABLE-----
SYSTEM SOFTWARE NON-COMPLIANT------
SAFETY CHECKLIST COMPLIANT----------

---------- ----

Provides for not using a "stop" or "halt" instruction or causing "wait"
state. The CPU is always executing, whether idling with nothing to do or
actively processing.

Provides for detection and termination of commands requesting actions
beyond the performance capability of the system.

Provides for disallowing performance of a potentially hazardous routine
concurrently with a maintenance action.

MEMORY/STORAGE DATA TRANSFER

Precludes storage, in usable form of information required to cause
initiation of a safety-critical function.

Provides for self-test capability to assure memory integrity.

Provides for prevention of a hardware failure or power interruption from
causing a memory change.

Provides for prevention of memory alteration or degradation over time
during use.

33

Provides for erasure or obliteration of clear text secure codes from
memory.

Provides for limiting control access to storage devices memory.

Provides for protecting the accessibility of memory regions dedicated to
critical functions.

Provides for having safety-critical operational software instructions
resident only in non-volatile ROM.

Provides for not using scratch files for storing or transferring safety-
critical information between computers.

Provides that remote transfer of data cannot be accomplished until
verification of data to be transferred is accomplished and authorization
to transfer the data has been provided by the operator(s).

Provides for self-test capability to assure memory integrity.

ITEM

 NON-APPLICABLE-----
SYSTEM SOFTWARE NON-COMPLIANT------
SAFETY CHECKLIST COMPLIANT----------

---------- ----

VERIFICATION/VALIDATION CHECKS

When a test specifies for the removal of safety interlocks, the software
provides for verification of reinstatement of these safety interlocks at
the completion of the testing.

Provides for verification and validation of status flags.

Provides for software validation of critical commands.

Provides for verification of the existence of prerequisite conditions
prior to command issuance IAW predefined operational requirements.

Requires that critical data communicated from one CPU to another be
verified prior to operational use.

Provides for verification of the results of safety-critical algorithms
prior to use.

Provides for verification of safety-critical parameters or variables
before an output is allowed.

Decisioning verifies the sequence and logic of all safety-critical
command messages and rejects commands when sequence or logic is
incorrect.

Provides that remote transfer of data cannot be accomplished until
verification of data to be transferred is accomplished and authorization
to transfer the data has been provided by the operator(s).

Provides that all operator actions that set up safety-critical signals
are verified by software based on control device positions.

Provides for control of analog functions having positive feedback mecha-

34

nisms that provide positive indications of the function having occurred

Provides for verification and validation of the prompt for the
initialization of the hazardous operation or sequence of hazardous
operations.

Provides for verification of accomplishment of each step of a hazardous
operation, or sequence of hazardous operations, by setting of a dedicated
status flag prior to proceeding to and initiating the next step in the
operation of a series of operations.

Provides for verification/validation of all critical commands prior to
transmission.

ITEM

 NON-APPLICABLE-----
SYSTEM SOFTWARE NON-COMPLIANT------
SAFETY CHECKLIST COMPLIANT----------

---------- ----

LOGIC STRUCTURE/UNIQUE CODES/INTERLOCKS

Provides for identification of flags to be unique and single purpose.

Provides for using unique arming codes to control critical safety
devices.

Provides for inclusion of system interlocks.

Provides for using a minimum of two separate independent commands to
initiate a safety-critical function.

Provides for the majority of safety-critical decisions and algorithms to
be contained within a single (or few) software development module(s).

Provides for single CPU control of a process which can result in major
system loss, system damage, or loss of human life to be incapable of
satisfying all of the requirements for initiation of the process.

Requires that decision logic using registers which obtain values from
end-item hardware and software not be based on values of all "ones" or
all "zeroes."

Requires that decision logic using registers which obtain values from
end-item hardware and software use specific binary patterns to reduce the
likelihood of malfunctioning end-item hardware/software satisfying the
decision logic.

Provides for cooperative processing between launch control point and mis-
sile computer(s) to process safety-critical functions.

Provides for having safety-critical modules with only one entry and one
exit point.

Provides for having files that are unique and have a single purpose.

Provides for not having operational program loads contain unused
executable code.

REASONABLENESS CHECKS

Provides for software system reasonableness checks on all safety-critical
inputs.

Provides for performing parity or other checks requiring two decisions
before providing an output.

35

ITEM

 NON-APPLICABLE-----
SYSTEM SOFTWARE NON-COMPLIANT------
SAFETY CHECKLIST COMPLIANT----------

---------- ----

MONITORING/DETECTION

Provides for inclusion of monitoring of safety devices.

Provides for detection or inadvertent computer character outputs.

Provides for detection of errors during computer memory loading to
terminal loading process.

provides for detection of unauthorized operation of data entry control.

Provides for identification of safety-critical functions requiring
continuous monitoring.

Provides for detection of improper processing that could degrade safety.

Provides for detecting a predefined safety-critical anomaly and informing
the operator what action was taken.

Requires that the software be capable of discriminating between valid and
invalid external interrupts and shall recover to a safe state in the
event of an erroneous external interrupt.

Provides for detection of improper sequence requests by the operator.

Provides for detection of inadvertent transfer of safety-critical
routines.

Provides for detection and termination of commands requesting actions
beyond the performance capability of the system.

ITEM

 NON-APPLICABLE-----
SYSTEM SOFTWARE NON-COMPLIANT------
SAFETY CHECKLIST COMPLIANT----------

---------- ----

36

INITIALIZATION/TIMING/SEQUENCING/STATUS CHECKING

Provides for a status check of critical system elements prior to
executing a potentially hazardous sequence.

Provides the proper configuration of inhibits, interlocks, safing logic,
and exception limits at initialization.

Provides for issuance of good guidance signal subsequent to satisfaction
of performance of flight safety checks.

Provides for timing sufficiency of commands relative to response to
detected unsafe conditions.

Provides for software initialization to a known safe state.

Provides that all critical timing relative to hazardous operations
processing is automated.

Provides for employing time limits for operations impacting system safety
and having these time limits included in the decision logic.

Provides for initializing all unused memory locations to a pattern, that
if executed as an instruction, will cause the system to revert to a known
safe state.

Provides for matching of observed flight terrain being matched to comput-
er stored flight terrain map prior to issuance of critical commands
(e.g., arming, fire, climb descend, etc.)

Applies the use of software timing coincident with hardware timing to
prevent initiation of safety-critical functions.

ITEM

 NON-APPLICABLE-----
SYSTEM SOFTWARE NON-COMPLIANT------
SAFETY CHECKLIST COMPLIANT----------

---------- ----

OPERATOR RESPONSE/LIMITATIONS

Requires an operator response for initiation of any potentially hazardous
sequence.

Provides for not allowing the safety-critical time limits in decision
logic to be changed by the console operator.

Provides for concise definition of operator interactions with the
software.

37

Provides for the operator cancellation of current processing in a safe
manner.

Requires that an operator cancellation of current processing be verified
by an additional operator response.

Provides that the system responds to a predefined safety-critical
anomalous conditions by notifying the operator of the condition and
identifying the action taken.

Provides that upon safing the system, the resulting system configuration
or status be provided to the operator and await definition of subsequent
software activity.

Provides that remote transfer of data can not be accomplished until
verification of data to be transferred is accomplished and authorization
to transfer the data has been provided by the operator.

Provides that operator control of safety-critical functions is maintained
under all circumstances throughout the weapon system operation.

Provides that all manual actions that set up safety-critical signals are
verified by software based on control device positions.

ITEM

 NON-APPLICABLE-----
SYSTEM SOFTWARE NON-COMPLIANT------
SAFETY CHECKLIST COMPLIANT----------

---------- ----

OPERATOR NOTIFICATION

Requires that an override of a safety interlock be identified to the test
conductor by a display on the test conductor's panel.

Provides for generation of critical status to operator.

Provides to operator identification of overrides to safety interlocks.

Provides for software indication if unauthorized action has taken place.

Provides for the system informing the operator of the anomaly detected.

Provides the system configuration status to operator upon safing of
safety-critical hardware items.

Provides for positive reporting of changes of safety-critical states
(e.g., absence of an armed indication does not constitute a safe
condition).

Provides for detecting a predefined safety-critical anomaly and informing
the operator what action was taken.

Provides for the software system to display safety-critical timing data
to the operator.

38

Provides for the software systems to indicate to the operator the
currently active operation(s) and function(s).

Provides for identification to the operator that a safing function
execution has occurred: provides the reason for the execution with a
description of the safing action.

Provides for notification of improper keyboard entries by the operators.

Prohibits transmission of any critical command found to be in error and
notifies the operator of the error.

Provides that upon safing the system, the resulting system configuration
or status be provided to the operator and await definition of subsequent
software activity.

DISTRIBUTION LIST

McKinlay & Associates
ATTN: (Archibald McKinlay, VI)
15669 Century Lake Dr.,
Chesterfield, MO 63017

Commander
US Army Defense Ammunition Center and School
ATTN: SMCAC-SF (Kenneth Proper)
Savanna, IL 61074-9639

Commander
US Army Aviation Systems Command
ATTN: AMSAV-XAP (Howard Chilton)
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

Commander
US Army Missile Command
ATTN: AMSMI-SF-SS (William Pottratz, Terrell Swindall)
Redstone Arsenal, AL 35898-5130

Commander

39

US Army Materiel Command
ATTN: AMCSF-E (Susan Jervis)
5001 Eisenhower Ave.
Alexandria, VA 22333-0001

Commander
US Army Safety Center
ATTN: CSSC-SE (Russ Peusch)
Fort Rucker, AL 36362-5363

Commander
US Army Test and Evaluation Command
ATTN: AMSTE-ST-S (Peter Kamenik)
Aberdeen Proving Ground, MD 21005-5059

Commander
US Army Chemical Research, Development
 and Engineering Center
ATTN: SMCRC-CMS (Peter Speath)
Aberdeen Proving Ground, MD 21010-5423

CONTINUATION OF DISTRIBUTION LIST

Commander

40

US Army Combat Systems Test Activity
ATTN: STECS-SO (Rudolfo Gil)
Aberdeen Proving Ground, MD 21010-5059

Commander
US Army Belvoir Research, Development
 and Engineering Center
ATTN: STRBE-TQS (Gaines Ho)
Fort Belvoir, VA 22060-5606

Project Manager for Training Devices (PM-TRADE)
ATTN: AMCPM-TND-SP (Connie Perry)
Naval Training Systems Center
12350 Research Parkway
Orlando, FL 32826-3224

Commander
US Army Training and Doctrine Command
ATTN: ATOS (Gregory Skaff)
Fort Monroe, VA 23651-5000

Commander
US Army Strategic Defense Command
ATTN: CSSD-SO (Russ Hutcherson)
PO Box 1500
Huntsville, AL 35807-3801

Administrator
Defense Technical Information Center
ATTN: DTIC FDAC
Cameron Station
Alexandria, VA 22304-6145 (2 copies)

Director
US Army Materiel Systems Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005

